Home > News and Announcements > Publications Resulting from McDonnell Funding

News and Announcements

 



Publications Resulting from McDonnell Funding

Posted Date: 5/24/2016

"Neuronal remapping and circuit persistence in economic decisions" by Jue Xie & Camillo Padoa Schioppa

The orbitofrontal cortex plays a central role in good-based economic decisions. When subjects make choices, neurons in this region represent the identities and values of offered and chosen goods. Notably, choices in different behavioral contexts may involve a potentially infinite variety of goods. Thus a fundamental question concerns the stability versus flexibility of the decision circuit. Here we show in rhesus monkeys that neurons encoding the identity or the subjective value of particular goods in a given context 'remap' and become associated with different goods when the context changes. At the same time, the overall organization of the decision circuit and the function of individual cells remain stable across contexts. In particular, two neurons supporting the same decision in one context also support the same decision in different contexts. These results demonstrate how the same neural circuit can underlie economic decisions involving a large variety of goods.

Read more

 

"Ultrasound modulates ion channel currents" by Jan Kubanek, Jingyi Shi, Jon Marsh, Di Chen, Cheri Deng & Jianmin Cui

Transcranial focused ultrasound (US) has been demonstrated to stimulate neurons in animals and humans, but the mechanism of this effect is unknown. It has been hypothesized that US, a mechanical stimulus, may mediate cellular discharge by activating mechanosensitive ion channels embedded within cellular membranes. To test this hypothesis, we expressed potassium and sodium mechanosensitive ion channels (channels of the two-pore-domain potassium family (K2P) including TREK-1, TREK-2, TRAAK; NaV1.5) in the Xenopus oocyte system. Focused US (10 MHz, 0.3–4.9 W/cm2) modulated the currents flowing through the ion channels on average by up to 23%, depending on channel and stimulus intensity. The effects were reversible upon repeated stimulation and were abolished when a channel blocker (ranolazine to block NaV1.5, BaCl2 to block K2P channels) was applied to the solution. These data reveal at the single cell level that focused US modulates the activity of specific ion channels to mediate transmembrane currents. These findings open doors to investigations of the effects of  US on ion channels expressed in neurons, retinal cells, or cardiac cells, which may lead to important medical applications. The findings may also pave the way to the development of sonogenetics: a non-invasive, US-based analogue of optogenetics.

Read more